LTX-315: A first-in-class oncolytic peptide that reshapes the tumor microenvironment

BALDUR SVEINBJØRNSSON^{2,3}, KETIL ANDRÉ CAMILIO^{1,2}, MENG-YU WANG¹, JANNE NESTVOLD^{1,2}, AND ØYSTEIN REKDAL^{2,3}

- 1. INSTITUTE OF CANCER RESEARCH, OUS, OSLO NORWAY
- ² LYTIX BIOPHARMA AS, P.O. BOX 6447, NO-9294 TROMSØ, NORWAY
- 3. DEPARTMENT OF MEDICAL BIOLOGY, FACULTY OF HEALTH SCIENCES, UNIVERSITY OF TROMSØ, TROMSØ, NORWAY

Background

The oncolytic peptide LTX-315, which has been de novo designed based on structure-activity relationship studies of host-defense peptides, has the ability to kill human cancer cells and induce long-lasting anticancer immune response when injected locally into tumors established in immunocompetent murine models (1-3,11).

The oncolytic effect of LTX-315 involves perturbation of the plasma membrane and the mitochondria with subsequent release of danger-associated molecular pattern molecules (DAMPs) such as ATP, Cytochrome C and HMGB1 (4-9). Furthermore, LTX-315 effectively disintegrates the cellular compartments with subsequent release of tumor antigens as demonstrated by a greater T-cell infiltration (TILs), TILs clonality and the number of clones with greater abundance in the tumor microenvironment.

In experimental tumor models, LTX-315 exerts abscopal effects and reshapes the tumor microenvironment by decreasing the local abundance of immunosuppressive cells and by increasing the frequency of effector T-cells (9,10). LTX-315´s ability to convert immunogenically "cold" tumors to "hot" makes it ideal combination partner with other immunotherapies as confirmed in experimental tumors combining LTX-315 with immune checkpoint inhibitors and immunochemotherapy.

LTX-315

Mode of action

LTX-315 induces a unique type of immunogenic cell death

LTX-315 treatment leads to increased tumor infiltration of CD8+ T cells

Treatment induces T-cell infiltration into both treated primary lesions but also in distal non-treated tumors (abscopal effect)

LTX-315 demonstrates synergy with other standard of care cancer therapies

WITH CHECKPOINT INHIBITORS

WITH CHEMOTHERAPY

LTX-315 increases the number and diversity of T cell clones

T cell clones in LTX-315-treated and control tumors (B-16 melanoma) were amplified and sequenced using the ImmunoSeq platform by Adaptive Biotech. Multiplex PCR was used to amplify the rearranged TCR3b sequences from sample DNA (VDJ region).

Conclusion

- LTX-315 shows an enhanced anticancer efficacy against A20 lymphomas and 4T1 breast carcinomas when combined with cyclophosphamide and doxorubicin, respectively.
- LTX-315 acts in synergy with checkpoint inhibition.
- The LTX-315 unique "release and reshape" properties make it a promising candidate for combination with several types of immunotherapies.
- LTX-315 is currently in clinical phase 1/2a studies.

References

- 1. Haug et al. J Med Chem. 2016
- 2. Camilio et al. Cancer Immunol Immunother. 2014
- 3. Camilio et al. Oncoimmunology. 2014
- 4. Zhou et al. Oncotarget. 2015
- 5. Eike et al. Oncotarget. 2015
- 6. Forveille et al. Cell Cycle. 20157. Zhou et al. Cell Death Dis. 2016
- 8. Sistigu et al. Cell Cycle. 2016
- 9. Yamazaki et al. Cell Death Differ. 2016
- 10. Nestvold et al. Oncoimmunology. 2017
- 11. Sveinbjørnsson et al. Future Medicinal Chemistry. 2017

